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Abstract. The phase diagram and magnetic properties such as the magnetization <S,>,
the four-spin thermal average <S;;S;;S.Si>, the specific heat Cy, the Curie temperature T,
and spin structures of spin-one (S=1) Ising spin system on two-dimensional square lattice
with the bilinear exchange interaction J;S;,Sy,, the biquadratic exchange interaction JZSiZZS,-ZZ,
the four-site four-spin interaction J,S;,S;;S(.S; and a single-ion anisotropy D have been
discussed by making use of the Monte Carlo simulation. In this Ising spin system with the
interactions Jy, J, and J, and anisotropy term D we have found new magnetic phases and
determined the conditions of phase transitions between lots of magnetic phases with
different ground state (GS) spin structures. Furthermore, it is confirmed that these
conditions of phase transition agree well with those obtained from a comparison of energies
per one spin for various spin structures with low energy. The characteristic temperature
dependence of the magnetization <S,>, the four-spin thermal average <S;;S;,S.S,>, the
thermal average <S,”> and the interesting changes of spin structures are investigated for

various values of interaction parameters of J, /J; and J; /J;.

Keywords: Ising model; higher-order spin interaction; single-ion anisotropy; Monte Carlo simulation

1. Introduction

In Heisenberg and Ising ferromagnets, the
existence and the importance of such higher-order
exchange interactions as the biquadratic exchange
interaction  J,(S; -Sj)z, the three-site four-spin
interaction Js(S; - S;)(S; - Sy), the four-site four-spin
interaction Ju(S; - S;)(S« - Sy) have been discussed
extensively by many investigators [1-3]. Theoretical
explanations of the origin of these interactions have
been given in the theory of the super exchange
interaction, the  magnetoelastic  effect, the
perturbation expansion and the spin-phonon coupling

3].
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It was pointed out that the higher-order exchange
interactions are smaller than the bilinear ones for the
3d group ions [3], and comparable with the bilinear
ones in the rare-earth compounds [4,5]. On the other
hand, in solid helium and some other materials
showing such phenomena as quadrupolar ordering of
molecules (solid hydrogen, liquid crystal) or the
cooperative Jahn Teller phase transitions, the higher-
order exchange interactions turned out to be the main
ones [6]. Furthermore, the four-site four-spin
interaction has been pointed out to be important to
explain the magnetic properties of the solid helium
[7,8] and the magnetic materials such as NiS, and
CesEu [9].

The Ising system of S=1 with the bilinear
interaction J;S;,S;; and the biquadratic exchange
interaction J,S;,°S;,” and the single-ion anisotropy D
is quite famous as so-called Blume-Emery-Griffiths



(BEG) model [10] and applied for many problems,
e.g. super-liquid helium, magnetic material,
semiconductor, alloy, lattice gas and so on. This
interaction J, is expected to have significant effects
on magnetic properties and spin arrangement in the
low-temperature region for the case of J, not
negligible compared to J:/S°[11]. Recently present
authors have investigated the effects of the three-site
and the four-site four-spin interactions and
biquadratic interaction on magnetic properties and
the GS spin structure of the Ising ferromagnet
[12,13] with S=1 by making use of the Monte Carlo
(MC) simulation.

In the present paper, we extend this MC calculation
to spin-one Ising spin system on two-dimensional
square lattice with three kinds of interactions such as
the bilinear exchange J;S;,S;;, the biquadratic
exchange  J,S;°S;°, the four-site  four-spin
interactions J,5;,S;;S.Si; and the single-ion anisotropy
DS;,°>. By making use of this simulation, we have
investigated more precisely the growth of the spin
ordering, conditions of phase transition and the
ground state (GS) spin structures of the Ising spin
system with S=1. In the present study, we
determined the phase diagrams of the Ising system
with anisotropy term D and without the one. The
obtained phase diagram is discussed in conjunction
with the GS spin structures determined by energy
evaluations. The temperature dependences of the
magnetization <S,> and four spin thermal average
<S;,S;:Sk.Si;> were also studied for various values of
parameters J,/J; and D/J;.

In Section 2, the spin Hamiltonian are given for
present Ising system, and the energies per one spin of
the spin structures with lower energy are shown to be
calculated from this spin Hamiltonian. Furthermore,
the method of the MC simulation is explained briefly.
In Section 3, phase diagram is obtained for exchange
parameters J,/J; and J4/J; by the MC simulation of
the Ising system without anisotropy term D. In the
latter part of this section, this calculation of MC
simulation are extended to the Ising system with
anisotropy term D, and phase diagram is determined.
Furthermore, these diagrams are confirmed by the
one obtained from comparisons of the energies per
one spin of the spin structures with lower energy. In
the Section 4, the magnetic properties and spin
structures are investigated for a new magnetic phase.
In the last Section 5, new interesting results obtained
here are summarized.

2. Spin Hamiltonian and Methods of MC
Simulation

The spin Hamiltonian for the present Ising spin
system with S=1 on two-dimensional square lattice
can be written as follows:

H=-3>5,S,-,D S%S%;

<djp <j>
~23, 28,5565, -DY_S%
<ijkl> i

Here, <ij> and <ijkl> denote the sum on the nearest
neighboring spin pairs and on the square spin sites of
two-dimensional square lattice. The coefficient 2 of
the third term in this Hamiltonian is obtained by
considering the sum of two terms (Si; S;)(Sk; *Si),
and (Si; * Si)(Sz * Sk;). Furthermore, S, in above
expression represents S, = £ 1, 0. From a
consideration of the Hamiltonian (1), magnetic
properties and spin arrangements of Ising spin
system of S=1 on two-dimensional square lattice are
calculated by the MC simulation. Furthermore, the
energies per one spin are obtained for various spin
structures with low energy (see e.g. [14]).

The MC simulations based on the Metropolis
method are carried out assuming periodic boundary
condition for two dimensional square lattice with
linear lattice size up to L=240. For fixed values of
various parameters J;, J,, J; and D, we start the
simulation at high temperatures adopting a random, a
ferromagnetic, and an antiferromagnetic initial
configurations, respectively, and gradually advance
this simulation to lower temperature. We use the last
spin configuration as an input for the calculation at
the next point. The magnetization <S,>, the four-spin
thermal average <S;,S;,Si.S>, the Curie temperature
T, and the magnetic specific heat Cy estimated from
the energy fluctuation are calculated using 2 X 10°
MC steps per spin (MCS/s) after discarding first 3 X
10° MCS/s.

In order to check the reliability of these obtained
average values, the thermal averages are also
calculated separately for each interval of 0.5X% 10°
MCS/s in the above mentioned total interval of 2 X
10° MCS/s. In the following section, results in the
largest system of L=240 are given without showing
error bars which were found to be negligibly small in
our calculation.



3. Results of Simulation and Discussion

3.1 Phase Diagram of Ising System without

Single-lon Anisotropy (D=0)

Let us calculate magnetic properties and spin
structures by the MC simulation and investigate the
conditions of a phase transition, and determine the
GS spin structures of the Ising spin system with the
biquadratic exchange interaction J, in the range of -
16 = J,/J; = -0.8 and the four-site four-spin
interaction J, in the range of -1.6=J4,J;=-0.8. In
this calculation, the interaction parameter J; was
treated as a constant value and an anisotropy
parameter D was set as zero, a constant value. Here,
we define these parameters J,/J; and J,/J; as x and ,
respectively. The phase diagram of the ground state
is obtained for this Ising spin system on two-
dimensional lattice, and the result is shown in Fig.1
for both interaction parameters xandy.
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Fig. 1 Phase diagram of Ising spin system with exchange
parameters x(J,/J:) in the range of -1.6=x=0.8 and y(
Ju/J1) in the range of -1.6 <y =< 0.8 (D=0).

The GS spin structures of magnetic phases P(a)~
P(d) are defined by the spin structures S(a) ~S(d)
shown in Fig.2, respectively. The GS spin structure
S(@) of phase P(a) is a ferromagnetic spin
arrangement characterized by magnetic parameters as
<S>=1, <Siszz>:1 and <SiszszzS|z>=1. The GS Spin
structure of phase P(b) calculated by the MC
simulation are confirmed to be the spin structure
mixed with S(b;) and S(b,) of the same energy
shown in Fig.2. The example of the GS spin structure
of P(b) obtained by the MC simulation is shown by

(@) in Fig.3. This GS spin structure of P(b) are
characterized by magnetic parameters as <S,>=0,
<Sizsjz>=o and <SiZSjZSkZSIZ>='1-

As can be seen from Fig.1, the new phase of P(c)
is found in the negative ranges of both interaction
parameters of x and y. This new phase P(c) is also
confirmed to exist in the range surrounded by three
phases P(a), P(b) and phase P(d). The GS spin
structure S(c) of phase P(c) turns out to be
characterized by magnetic parameters as <S,>=0.75,
<S§;;5;>=0.5 and <S§;,S;;SS;;>=0. Furthermore, the
example of the GS spin structure of P(d) obtained by
the MC simulation is shown by (b) in Fig.3. The
GS spin structure of phase P(d) are characterized by
magnetic parameters as <S,>=0, <S;5;>=0 and
<SiszszzSIz>:0-

Furthermore, the magnetizations <S,(A)> and
<S,(B)>, and thermal averages <S,%(A)> and <S,*(B)>
on the sub-lattice have been calculated for this phase
P(d). Here, A and B represent the two-
interpenetrating lattices. The conditions of <S,(A)> =
0, <S,(B)> = 0 and <S2(A)> = <SB)+# 0 are
obtained by this simulation. Therefore, the GS spin
structure of P(d) is confirmed not to be a staggered
quadrupolar (SQ) ordering. In the Ising spin system
with J,/J; =-1.5 and J,/J; =-0.5, thermal averages
<S2(A)> and <S,*(B)> turn out to take the same
value as <S2(A)> = <S}(B)>=0.287 at low
temperatures. Therefore, these facts may suggest that
the number of a spin with S, =0 is about 5 times
larger than that with S, =1 or S, =-1 in this region.
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Fig. 2 The GS spin structures S(a), S(b:), S(by), S(c),
S(d;) and S(d,) of magnetic phases P(a), P(b), P(c) and
P(d), respectively(D=0). Open and closed circles, and dot
denote Sz =1, S; =-1 and S; =0, respectively. The GS spin
structures S(d,) appears only for spin system with single-
ion anisotropy D (D#0)
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Fig. 3 The GS spin structures of P(b) and P(d)
calculated by MC simulation. Open and closed circles,
and dot denote S; =1, Sz =-1 and Sz =0, respectively.

Next, let us calculate the energies E(a) ~E(d) per
one spin for spin structures S(a) ~S(d) shown in
Fig.2 by taking spin Hamiltonian (1) into
consideration (see e.g.[14]). The energies per one
spin for S(a) ~S(d) obtained from this calculation
are given as E(a)=-2x-2y-2, E(by)= E(by)=-2x+2y,
E(c)=-x-1 and E(d)=0. Furthermore, we have
determined the conditions of phase transition by
making use of the energies per one spin. By
comparing the energy E(c) with each energy E(a),
E(b) and E(d), the phase transitions turn out to occur
at y =-x/2 -1/2, y= x/2-1/2 and x=-1, respectively.
The conditions of phase transition are obtained from
same procedures as y=-1/2 by comparing E(a) with
E(b) and asy =- x-1, y = x by comparing E(d) with
E(a) and E(b),respectively. It is worth noting that
these conditions obtained from comparisons of
energies per one spin agree quite well with the results
calculated from the MC simulation shown in Fig.1.

3.2 Phase Diagram of Ising System with
Single-lon Anisotropy (D#0)

Next, let us investigate magnetic properties and
spin structures by the MC simulation and investigate
the conditions of a phase transition, and determine
the GS spin structures of the Ising spin system with
an anisotropy term D and the biquadratic exchange
interaction J, in the range of -1.6=J,/J;=-0.8 and
the four-site four-spin interaction J, in the range of -
1.6=J,/J:=-0.8. In this calculation, the interaction
parameter J; was treated as a constant value, and the
MC simulation was performed for the Ising spin
system with single-ion anisotropic parameter D in
the range of 0<D/J;=1.5. The conditions of phase
transition and GS spin structures for Ising system
with an anisotropy D on two-dimensional square
lattice are calculated, and the phase diagram of the
ground state for for Ising system with D/J;=1 is
shown in Fig. 4.
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Fig. 4 Phase diagram of Ising spin system with
exchange parameters x(J,/J;) in the range of -1.6=x
=0.8 and y(J4/Jy) in the range of -1.6 =y =0.8 and
an anisotropy parameter of D/J;=1.

As can be seen from Fig.4, all phases P(a) ~ P(d)
for D/J;=1 are given by parallel translation along
X(J./3;) axis of those for D/J;=0. These facts suggest
that the effects of interaction J, with negative value
which has a tendency to decrease the value of S, may
deny by operation of a single-ion anisotropy term D
with a tendency to increase the value of S,. On the
other hand, as a single-ion anisotropy term D and the
interaction J, with negative value have almost the
same operation to increase the value of S, this
single-ion anisotropy term D cannot give any change



to the effect by interaction J,, The GS spin structures
for magnetic phases P(a) ~ P(c) in Fig.4 are the
same with those in Fig.1. It is worth noting that the
GS spin structures for magnetic phase P(d) is S(dy)
shown in Fig.2. This spin structure S(d,) is
characterized by the conditions of <S,(A)>=0,
<S,(B)> = 0 and <S,*(A)>=1, <S,2(B)>=0. Therefore,
the GS spin structure of P(d) is confirmed to be the
staggered quadrupolar (SQ) ordering. The example
of the GS spin structure of P(d) obtained by the MC
simulation is shown in Fig.5.

0O-0-0-0-0:-0:-0-0-0-0-
-®-0-0-0-0-0-0-0-0-0

Fig. 5 The GS spin structure of P(d) calculated by
MC simulation. Open and closed circles, and dot
denote S; =1, Sz =-1 and S; =0, respectively.

Next, let us calculate the energies E(a) ~E(d) per
one spin for spin structures S(a) ~S(d) for the Ising
spin system with a single-ion anisotropy D. The
energies per one spin for S(a) ~S(d) for D/J; #0
obtained from the same calculation with the one for
D =0 are given as E(a)=-2x-2y-d-2, E(by)= E(b,)=-
2x+2y-d, E(c)=-x-3d/4-1 and E(d)=-d/2. Here, the
parameter d is defined as D/J;, Furthermore, we have
determined the conditions of phase transition by
making use of these energies per one spin. These
conditions are given as y =-x/2-d/8 -1/2, y= x/2+d/8-
1/2, x=-d/4-1, y=-1/2, y =- x-d/4-1 and y = x+d/4. By
substituting d=1 in above mentioned equations, the
conditions of phase transition for the Ising spin
system with D/J;=1 are obtained as y =-x/2-5/8, y=
xI2-3/8, x=-5/4, y=-1/2, y =- x-5/4 and y = x+1/4. It
is quite remarkable that the results by these straight
lines obtained from energy comparison agree well
with those shown in Fig.4 determined from the MC
simulation.

3.3 Magnetic Properties of New Phase
P(c) on Ising System with Interactions
J, and Js (DZO)

Let us investigate the magnetic properties such as
the magnetization <S,> and the four-spin thermal
average <S;,5;S(Si;>, the magnetic specific heat Cy
of a new magnetic phase P(c) by making use of the
MC simulation. The changes of the temperature
dependence of <S> for Ising system with the fixed
interaction J, (J4/J;=-0.5) and various values of J,are
shown in Fig.6. Furthermore, the temperature
dependences of <S;,S;;S,S;> and Cy, for Ising system
with the fixed interaction J4 (J4/J;=-0.5) and various
values of J, are shown by (a) and (b) in Fig.7,
respectively. These calculations by the MC
simulation are performed for the Ising spin system
with no anisotropy (D=0).
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Fig. 6 Temperature dependence of <S> of the
magnetic phase P(c) calculated by MC simulation
for fixed value of J; (J4/J;=-0.5) and various
values J, of in the range of -1.2=J,/J,=0.8.
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Fig. 7 Temperature dependence of (a) <Siz SizSz Siz >
and (b) Cy of the magnetic phase P(c) calculated by
by MC simulation for fixed value of (a) J4(J4/J;=-0.5)
and fixed value of (b) J;(J2/J,=-0.6) .

As can be seen from Fig.6, the shape of
temperature dependence of <S> for J,/J;=-0.2 is
almost the same with the one for J,/J;=0. Therefore,
ferromagnetic property of this Ising system with
J4/J;=-0.5 turns out to keep in the interaction range
of -0.4<J,/J;=0. The effect of negative interaction J,
to decrease the value of S, at J,/J;=-0.2 may be
canceled by the one of negative interaction J, with
J4/J1=-0.5 to increase the value of S,.

As can be seen from (a) in Fig.7, four-spin
thermal average <S;,S;;S.S;,> with large positive
value appears in the range of -0.4<J,/J;<0. This
result supports the existence of rather strong
ferromagnetic property in this interaction range. It is
interesting that the sign of <S;,S;,S,,S;,> of the Ising
system with J,/J;=-0.5 and J,/J;=0 is negative for
temperature range in the paramagnetic state (T.<T)
and positive for temperature range in ordered state
(T<T.). Furthermore, two peaks are observed on the
specific heat Cy, curve (b) in Fig.7 in the interaction
range of -0.8<J4J;<0. These two peaks may
correspond to the appearance of ordered state (T.)
and the creation of the GM spin structure of
magnetic phase P(c).

The changes of the temperature dependence of
<S,> and <S;;5;,S.S;> for the Ising system with the
fixed interaction J, ( J,/J;=-0.6) and various values of
J,are shown by (a) and (b) in Fig. 8. The values of
<S,> at T=0 are 1, 0.75 and O for the interaction
ranges of -0.2< Jy/J;, -0.8< Jy/J; < -0.2 and  Jy/Ji<-
0.9, respectively. Furthermore, <S,> at T=0 for the
phase boundaries of J,/J;=-0.2 and J,/J; =-0.8 are
0.875 and 0.625, respectively.
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Fig. 8 Temperature dependence of (a) <S> and (b)
<Siz Sjz Skz Siz > of the magnetic phase P(c) calculated
by MC simulation for fixed value of J, (J,/J;=-0.6) and
various values of in the range of -1=J,/J,=0.

These behaviors of <S,> at low temperature support
the phase diagram shown in Fig.1 and the GS spin
structure shown in Fig.2. It is quite remarkable that
near the phase boundary of the interaction range of
-0.9=J,/J; < -0.8, the spin structure with almost only
structure S (b;) in Fig.2 appears as the GS spin
structure of phase P(b). In the interaction range of
Jo/J; < -0.9, the spin structure mixed with structures
S (by) and S (by) of the same energy turns out to be
the GS spin structure of phase P(b). Therefore, the
value of <S,> at T=0 becomes zero. As can be seen
from (b) in Fig.8, the temperature dependence curves
of <S§;,5;SSi,> for phase P(b) are more sharp than
those for P(a) near the temperature of phase



transition from paramagnetic state to ordered state.
It should be noted that the value of <S;,S;,S,S;> for
parameters J,/J; =-0.6 and J,/J; =-0.7 is almost zero
at all temperatures.

3.4 Spin Arrangements of Phase P(d) on
Ising System with Interactions J, and
Js

The temperature dependence of the spin
arrangements of phase P(d) have been investigated
for various values of an anisotropy parameters D/J;
by the MC simulation . As the value of <S,> is zero
in all region of P(d), we have calculated the thermal
averages of <S,%(A)> and <S2(B)>. Here, these
values of <S,*(A)> and <S,%(B)> are defined as <S,
(A)> > <S;*(B)>, and A and B represent the two-
interpenetrating lattices. The temperature
dependences of <S,*(A)> and <S,%(B)> of the Ising
spin system with J,/J;=-1.5 and J4/J; =-0.5 are shown
in Fig. 9 for various values of anisotropy term D in
the range of 0=D/J; =1.5.
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Fig. 9 Temperature dependence of <S? (A)> and
<S2 (B)> of the magnetic phase P(d) calculated by
MC simulation for various values of D in the range
of 0=D/J;=1.5.

As can be seen from Fig.9, for Ising system
without anisotropy (D=0), these thermal average
<S,(A)> and <S,°(B)> take the same value in all
temperature range and have a small temperature
dependence. Furthermore, these values <S,? (A)> and
<S,? (B)>become 0.287 at T=0.

On the other hand, <S,” (A)> and <S,? (B)> turn
out to take the different values at low temperatures
for Ising system with anisotropy (D#0). The values
of <S. (A)> and <S,? (B)> become 1 and 0 at T=0,
respectively. Therefore, this spin state with
anisotropy (D #0) is confirmed to be a staggered
quadrupolar (SQ) ordering state. It is worth noting
that the value of <S,? (B)> become zero at higher
temperature than the value of <S,> (A)> become one
for anisotropy in the range of 0<D/J;=1.0, and the
value of <S,2 (A)> become one at higher temperature
than the value of <S? (B)> become zero for
anisotropy in the range of 1.0<D/J;. These behaviors
of <S,2 (A)> and <S,% (B)> may depend the values of
<S,? (A)> and <S,? (B)> at the temperature at which
these values begin taking different values with
decreasing temperature.

Next, let us investigate the change of a spin
arrangement in this phase P(d). The temperature
dependences of a spin arrangement for Ising spin
system with J,/J;=-1.5, J4/J; =-0.5 and D/J;=1 are
shown in Fig.10. The spin arrangements at
temperature of kgT/J;=0.5 and 0.4 are shown by (a)
and (b) in this figure. The spin arrangements (a) and
(b) correspond to paramagnetic state and staggered
quadrupolar (SQ) state, respectively. As can be seen
from Fig.10, the numbers of spins with S, =%1 and
S;=0 are almost constant even by change of
temperature, and an ordered state(SQ state) are made
by changing the position of these spins with S, =+ 1
and S,=0.
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Fig. 10 The spin structure of P(d) calculated by MC
simulation at (a) ksT/J;=0.5 (paramagnetic state) and
(b) ksT/J;=0.4 (SQ state). Open and closed circles,
and dot denote S; =1, S; =-1 and S; =0, respectively.

4. Concluding Remarks

In the previous section, for the Ising spin system
of S=1 with the bilinear exchange interaction J;S;,Sj;,
the biquadratic exchange interaction J,S;,°S;,” and the
four-site  four-spin interaction = J,S;;S;;S.Si,,  the
magnetization <S,>, the four-spin thermal average
<S;,S;:Sk:S1>, the specific heat Cy and the GS spin
structures have been calculated by making use of the
MC simulation.

Summarizing the present results on the two-
dimensional square lattice, we may conclude as
follows:

(1) Phase diagrams of the ground state of Ising spin
system of S=1 with interaction parameters J,/J;
and J,/J; without a single-ion anisotropy D and
with the one are obtained by the MC simulation.
The conditions of phase transition for parameters
Jo/J; and J,/J; are symmetric against the axis of
J4/J; =-1/2.The Phase diagram with anisotropy
parameter D is confirmed to be obtained by
parallel translation along J,/J; axis of the one
without D. The conditions of phase transition and
the GS spin structures determined by this MC
simulation show good agreements with those
calculated from the comparison of energies per
one spin for various spin structures with low
energy.

(2) The condition of phase transitions and the GS
spin structures on the x(Jx/J;) and y(J4/J;) axes
agree completely with those obtained in the
previous studies [12,13]. The new phase P(c)

exists in this Ising spin system with interactions
Ji, J; and J4 and this new phase has been
confirmed to appear also in the Ising spin system
with interactions J;, J, and J, and anisotropy D.
This phase PS(c) is characterized by <S,>=0.75,
<Siszz>:0-5 and <SiszszzSIz>:0-

(3) The phase P(d) of the Ising spin system with
interactions Jy, J,and Jsand anisotropy D is a SQ
state, on the other hand, the one with interactions
J1, J,and Jsand without anisotropy D is not a SQ
state. The speeds of spin ordering of <S,? (A)>
and <S,? (B)> are different for the cases of
0<D/J;=1and 1<D/J,.
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