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Abstract.

The phase diagram and magnetic properties such as the magnetization <S>, four-spin thermal
average <S:5;.5;-5>>, the magnetic specific heat C), and spin structures of spin-one (S=1) Ising
spin system on two-dimensional square lattice with the bilinear exchange interaction J;S.S., the
three-site four-spin interaction J3S,-szzszz, the four-site four-spin interaction J,S;.5.5:.S.. and the
single-ion anisotropy DS,~22 have been discussed by making use of the Monte Carlo simulation. In
this Ising spin system, we have found new magnetic phases and determined the conditions of phase

transitions and phase diagram. Furthermore, itis

confirmed that these conditions of phase

transition agree well with those obtained from a comparison of energies per one spin for various
spin structures with low energy. The characteristic temperature dependences of the magnetization
<§.>, four-spin thermal average <S..5.5;.5,> and spin structures are investigated for various values

of interaction parameters of J; /J; and J, /J;.
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1. Introduction

In Heisenberg and Ising ferromagnets, the existence
and the importance of such higher-order exchange
interactions as the biquadratic exchange interaction J,
(S; 'Sj)z, the three-site four-spin interaction J; (S; *
S))(S; - Sy), the four-site four-spin interaction Jy (S; *
S,)(Sk *S;) have been discussed extensively by many
investigators [1-4]. Theoretical explanations of the
origin of these interactions have been given in the
theory of the super exchange interaction, the
magnetoelastic effect, the perturbation expansion and
the spin-phonon coupling [4].

It was pointed out that the higher-order exchange
interactions are smaller than the bilinear ones for the
3d group ions [4], and comparable with the bilinear
ones in the rare-earth compounds [5,6]. On the other
hand, in solid helium and some other materials
showing such phenomena as quadrupolar ordering of
molecules (solid hydrogen, liquid crystal) or the
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cooperative Jahn Teller phase transitions, the higher-
order exchange interactions turned out to be the main
ones [7]. Furthermore, the four-site four-spin
interaction has been pointed out to be important to
explain the magnetic properties of the solid helium
[8,9] and the magnetic materials such as NiS, and
CeEu [10].

The Ising system of S=1 with the bilinear
interaction J;S.S, and the biquadratic exchange
interaction J gSizzS,-ZZ and the single-ion anisotropy DS.’
is quite famous as so-called Blume-Emery-Griffiths
(BEG) model [1] and applied for many problems, e.g.
super-liquid helium, magnetic material,
semiconductor, alloy, lattice gas and so on. This
interaction J; is expected to have significant effects on
magnetic properties and spin arrangements in the low-
temperature region for the case of J, not negligible
compared to J,/S’[11]. Recently present authors have
investigated the effects of the three-site and the four-
site four-spin interactions on magnetic properties and
the GS spin structure of the Ising ferromagnet [12,13]
with S=1 by making use of the Monte Carlo (MC)
simulation.

In the present paper, we extend this MC calculation
to spin-one Ising spin system on two-dimensional
square lattice with three kinds of interactions such as
the bilinear exchange J,S..S;., the three-site four-spin
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interaction J3S,-ZS}ZZS,(Z the four-site  four-spin
interaction J4S:5;.5.S;. and with the single-ion
anisotropy DS..”. By making use of this simulation, we
have investigated more precisely the growth of the
spin ordering, conditions of phase transition and the
ground state (GS) spin structures of the Ising spin
system with S=1. The obtained phase diagram is
discussed in conjunction with the GS spin structures
determined by energy evaluations. The temperature
dependences of the magnetization <S>, the magnetic
specific heat Cj, and four spin thermal average
<8:8,:SiS1> were also studied for various values of
parameters J,/J; J,/J;and D/J;.

In Section 2, the spin Hamiltonian is given for
present Ising system with S=1. Furthermore, the
method of the MC simulation is explained briefly. The
energies per one spin of spin structures with lower
energy are also obtained from this spin Hamiltonian.
In Section 3, phase diagram is obtained for exchange
parameters J3/J; and J,/J; by the MC simulation of this
Ising system. In the Section 4, the magnetic properties
and the spin ordering are investigated for new
magnetic phases. In the last Section 5, new interesting
results obtained here are summarized.

2. Spin Hamiltonian , Methods of Simulation
and Energy Estimation

The spin Hamiltonian for the present Ising spin
system with S=1 on two-dimensional square lattice can
be written as follows:

H=-J)8.8,-2J,).5.8:S,

<ij> <ijk>
—2J,>.8.8,.8,.S. —D> 8% ()
<ijki> i

Here, <ij>, <ijk> and <ijkI> denote the sum on the
nearest neighboring spin pairs, and on the three spin
sites and the square spin sites of two-dimensional
square lattice. The coefficient 2 of the second and the
third terms in this Hamiltonian is obtained by
considering the sum of two terms (S;. *S;.)(S}. *Si.) and
(sz 'Skz)(Siz 'sz)’ and (Siz 'sz)(Skz 'S/z) and (Siz 'S/z)(sz :
Si.). Furthermore, S in above expression represents S,
= *1, 0. From a consideration of the Hamiltonian (1),
magnetic properties and spin arrangements of Ising
spin system of S=1 on two-dimensional square lattice
are calculated by the MC simulation.

The MC simulations based on the Metropolis
method are carried out assuming periodic boundary
condition for two dimensional square lattice with
linear lattice size up to L=240. For fixed values of
various parameters J;, J;, J; and D, we start the
simulation at high temperatures adopting a random, a
ferromagnetic, and an antiferromagnetic initial
configurations, respectively, and gradually advance
this simulation to lower temperature. We use the last
spin configuration as an input for the calculation at the
next point. The magnetization <S>, the four-spin
thermal average <S.5.5..5> and the magnetic
specific heat C), estimated from the energy fluctuation
are calculated using 2 X 10° MC steps per spin
(MCS/s) after discarding first 3 X 10° MCS/s.

In order to check the reliability of these obtained
average values, the thermal averages are also
calculated separately for each interval of 0.5 X 10°
MCS/s in the above mentioned total interval of 2 10’
MCS/s. In the following section, results in the largest
system of L=240 are given without showing error bars
which were found to be negligibly small in our
calculation at whole temperature range.

By taking Hamiltonian (1) into consideration, the
energies per one spin are obtained for various spin
structures with low energy (see e.g. [14]). The GS spin
structures are determined for the Ising spin system
with interactions J;, J; and J,, and anisotropy term D
by comparing these energies per one spin with each
other. The GS spin structures with low energy
obtained for the spin system of S = 1 with positive
interaction J; are shown in Fig. 1. Let us define
parameters x, y and d as J3J; , J,/J; and D/J;,
respectively. The energies per one spin for the spin
structures S(a) ~ S(e) of Ising spin system with S=1
are given as E(a)=E,/NJ;=-2x-12y-d-2, E(b)=E,/NJ;=-
2x-d-1, E(c)=E./NJ=-2x+4y-d, E(d)=E,/NJ;=2x +4y-d
and E(e)=E./NJ,=2x-4y-d, respectively.
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Fig. 1 The GS spin structures S(a), S(b), S(¢), S(d) and
S(e) for the Ising spin system of S=1 with
interactions J;, J; J,and anisotropy D. Open and
closed circles denote Sz =1 and S, =-1, respectively.

3. Results of Simulation and Discussion

3.1 Phase Diagram of Ising Spin System

Let us calculate magnetic properties and spin
structures by making use of the MC simulation and
investigate the condition of phase transitions, and
determine the GS spin structures of the Ising spin
system with the three-site four-spin interaction J; in
the range of -0.5=J3//;=0.3 and the four-site four-
spin interaction J, in the range of -1.0=J,J,=0.2. In
this calculation, the interaction parameter .J; was
treated as a positive constant value. Here, we define

these parameters J,/J; and J3/J; as x and y, respectively.

The phase diagram is obtained for this Ising spin
system on two-dimensional lattice without anisotropy
(D = 0), and the result for both interaction parameters
xandy is shown in Fig.2.

The GS spin structures of magnetic phases P(a)~
P(e) determined by the MC simulation are confirmed
to be the spin structures S(a) ~S(e) obtained by the
energy comparison shown in Fig.1, respectively. The

P(d)

Fig. 2 Phase diagram of Ising spin system on two-
dimensional square lattice with exchange parameters
x(J4/J;) in the range of -1.0=x=0.2 and y(J;/J)) in
the range of -0.5=y=0.3.

GS spin structure S(a) of phase P(a) is a ferromagnetic
spin arrangement. The boundary conditions between
P(a) and P(b), and between P(b) and P(c) are given by
J3/J; =-1/12and -1/4, respectively. A's can be seen
from Fig.2, the magnetic phases P(b) and P(e)
disappear under the condition of J,/J; < -1/6 and J,/J;
>-1/2, respectively.

The conditions of phase transition are obtained by
comparing the energies per one spin expressed in the
previous section. From the comparisons of E(a) with
E(b), E(d) and E(e), the conditions of phase transition
are obtained as y=-1/12, y=-x/4-1/8, y=-x/2-1/4,
respectively. Furthermore, the conditions of phase
transition are obtained as y=-1/4, y=-x-1/4 from the
comparisons of E(b) with E(c), E(d) and as x=0, y=0
from the comparisons of E(d) with E(c), E(e),
respectively.  All these conditions calculated from
energy comparison agree well with the ones obtained
from the MC simulation shown in Fig.2. It is worth
noting that all these conditions are not depended on
the anisotropy parameter D (d).

3.2 Magnetic Properties of New Magnetic
Phase P(e) on Ising Spin System

Let us investigate the magnetic properties such as the
magnetization <S> and the four-spin thermal average
<8::8::Sk-S;=>, the magnetic specific heat C,, of a new
magnetic phase P(e) by making use of the MC
simulation. T he temperature dependence of <S>,
<8::8::Sk:S;> and Cy, in the Ising system with the fixed
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interaction J; (J/J,=-0.8) and various values of
interaction J; are shown in Fig.3, Fig.4 and Fig.5,
respectively. These calculations by the MC simulation
are performed on the Ising spin system with
interaction J; in the range of 0=J3//;=0.2 for <S>
and <S..5.S..S,>, and in the range of 0.06=JyJ,=
0.14 for Cy,.

1.2
<z s=1 D=0 J/J=-0.8 N
1.0
0.8
0.6
0.4
0.2
0.0
0 0.5 1 1.5 2 2.5 3 3.5
Fig. 3 Temperature dependence of <S> of the
magnetic phase P(e) calculated by the MC
simulation for fixed value of J, (J,/J;=-0.8) and
various values J; of in the range of 0=J,J,=0.2
1.2
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Fig. 4 Temperature dependence of <Siz S;z Siz Siz > of
the magnetic phase P(e) calculated by the MC
simulation for fixed value of J, (J/J;=-0.8) and
various values J; of in the range of 0=.J,/.J,<0.2
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Fig. 5 Temperature dependence of Cj, of the magnetic phase
P(e) calculated by the MC simulation for fixed value of
J4(J/J=-0.8) and various values J;of in the range of 0.6
=JyJ=0.14

It is noticeable that the ferromagnetic order <S>
constructed at temperatures below 7, decreases
abruptly in the middle temperature range for
interaction J; in the range of 0.08=.J;//;=0.14. As
can be seen from Fig.3, this abrupt change of <S> is
large for J; such as J3/J;=0.12 ~0.14 just below the
condition of phase transition(J3./;=0.15). From the
behavior of <S.5.5;.S,> shown in Fig.4, the spin order
of S(e) turns out to begin forming below this middle
temperature at which abrupt decrease of <S> occurs.

It is interesting that <S..S.5.S,> for J3/J,;=0.12 ~
0.14 takes positive value in the higher temperature
range than the abrupt decrease of <S..S.S..5.>. From
Fig.5, double peaks of C,, turn out to appear for
interaction J; in the range of 0.08=.J;//;=0.14. It is
worth noting that the peaks of lower temperature are
large than those of higher temperature for each
interaction parameter J;, respectively. This fact
suggests that the large change of spin structures occurs
for the formation of <S§.5,.5;.5.>. Therefore, let us
investigate the change of spin ordering with
decreasing temperature by the MC simulation. The
spin structures on the Ising system with the
interactions J3.J;=0.14 and J,/J;=-0.8 are shown in
Fig.6 for various temperatures. It is confirmed that the
spin structure of S(e) with these interactions J; and J,
begin forming from ferromagnetic order under
condition of kz7/J,;=0.6.
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Fig.6 The formation of spin structure S(e)
calculated by the MC simulation for the
interactions J3/J,=0.14 and J,/J=-0.8 at (a)
kgT/J=2.2, (b) kgT/J;=1.0, (c) kgT/J,=0.6 and (d)
kgT/J;=0.1. Open and closed circles, and dot
denote S, =1, S, =-1 and S, =0, respectively.

3.3 Magnetic Properties of Magnetic
Phases P(b), P(c) and P(d) on Ising Spin
System

Next, let us investigate the magnetic ordering of
the magnetic phases P(b), P(c) and P(d) without non-
zero magnetization (<S;>=0) as GS spin structure. The
magnetic specific heat Cj, and the four-spin thermal
average <S..5.5:.S;> of these magnetic phases have
been calculated by making use of the MC simulation.
The calculated results of C); and <S.5;.S.S;> of the
magnetic phases P(b) and P(d) with the fixed
interaction J3/J;=-0.15 and various values of the
interaction J; in the range -0.4=.J,/J;=0.2 are shown
in Fig.7 and Fig.8, respectively. It is confirmed that
the phase change between P(b) and P(d) occurs at the
condition of J3/J;=-0.15 and J,/J;=-0.1 from behaviors
of Cyyand <S..5..5.S:>. The positions of peaks of Cy,
for magnetic phases P(b) and P(d) turn out to be
almost symmetric against the condition of phase
transition (J3//;=-0.15 and J,J;=-0.1). The peaks of
Cys on the phase P(d) are, however, higher than those
on the phase (b). It is remarkable that <S.S;.5..5.>
takes positive value at the condition of the phase
transition  (J3//;=-0.15 and J,/J;=-0.1). From Fig.8,
the change of the temperature dependence of
<8:8,.Si:S;=> on the phase P(b) turns out to be larger
than that on the phase P(d). This behavior of
<8::8,:5iz51> 1s consistent with that of C),.

8.0

7.0 F CM/NkB S=1 D=0

6.0
J3/J=-0.15 —a—0.1

50 ——0

4.0

30 F —o—-0.3
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1.0

0.0 B=8°

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 7 Temperature dependence of C, of the
magnetic phases P(b) and P(d) calculated by the
MC simulation for fixed value of J; (J+J,;=-0.15)
and various values J, of in the range of -0.4=
J/I1=0.2
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Fig. 8 Temperature dependence of <Sj; S;; Siz Siz >
of the magnetic phase P(b) and P(d) calculated
by the MC simulation for fixed value of J;
(JJ;=-0.15) and various values J, of in the
range of -0.4=J,J,;=0.2
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Fig. 9 The formation of spin structure S(b)
calculated by the MC simulation for the
interactions JyJ,/=-0.15 and JyJ;=-0.1 at (a)
kgT/J=1.0, (b) kgT/J;=0.5, (c) kzT/J;=0.1. Open
and closed circles, and dot denote S, =1, S; =-1 and
Sz =0, respectively.
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Fig.10 The formation of spin structure S(d)
calculated by the MC simulation for the
interactions JyJ;=-0.15 and JyJ;=-0.3 at (a)
kgT/J=1.0, (b) kgT/J;=0.5, (c) kzT/J;=0.1. Open
and closed circles, and dot denote S; =1, Sz =1
and S, =0, respectively.

The formation of the GS spin structure S(b) has
investigated for the spin system with interactions
J3y/J;=-0.15 and J3/J;=-0.1. The spin structures at
kpT/J=1.0, 0.5 and 0.1 are shown in Fig9.
Furthermore, the formation of the GS spin structure
S(d) has investigated for the spin system with
interactions J3J,=-0.15 and J3;/J/=-0.3. The spin
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structures at kz7/J,=1.0, 0.5 and 0.1 are shown in 1.2

Fig.10. Both GS spin structures S(b) and S(d) turns

out to be almost random at the temperature of kz7/.J,= 0s | <SizS;8:.S,>
1.0. They are, however, formed over large area at the

temperature of kz7/J,;=0.5. 04

Furthermore, the calculated results of C,, and
<8::S28i:S1=> of the magnetic phases P(c) and P(d) with
the fixed interaction J3/J;=-0.4 and the various values
of interaction J, in the range -0.2=J,J;=0.2 are
shown in Fig.11 and Fig.12, respectively. It is
confirmed that the phase change between P(c) and
P(d) occurs at J3/.J;=-0.4 and J,/J,=0 from behaviors of
Cy and <S.S;.S..S;>. The magnetic ordering of P(d) 12
turns out to start at higher temperature than that of P(c)
from the behaviors of the temperature dependence of
Cy and <S.S.Si.S>. The C), on the phase P(d) has
higher peak than that on the phase P(c) as shown in

0.0
0.2 0.4
-0.4

-0.8

Fig. 12 Temperature dependence of <S;z Sz Siz Siz >
of the magnetic phase P(c) and P(d) calculated by
the MC simulation for fixed value of J; (Jy/J,=-
0.4) and various values J, of in the range of -0.2=

Fig.11, and this result reflects the abrupt larger change
of <S..5;.5;-5;> on the phase P(d) than on the phase
P(c) as shown in Fig.12.
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Fig. 11 Temperature dependence of C) of the magnetic
phases P(c) and P(d) calculated by the MC simulation
for fixed value of J;(J5J;=-0.4) and various values J, of
in the range of -02=5J,/7,=50.2
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interactions J3/J;=-04 and J/J=-0.2. The spin 0000000000000000
structures at kz7/J,=1.2, 1.0, 0.8 and 0.1 are shown in 000000000000 0000
Fig.14. Both GS spin structures S(b) and S(d) turns 0000000000000000
out to be almost random at the temperature of kz7/J,= ©O0O000000000000
1.2. The spin structures S(c) and S(d) are, however, (c)

start forming at the temperature of k37/J;= 0.8 and
1.0, respectively.
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Fig. 14 The formation of spin structure of S(d)
kgT!J;=1.0, (c) kgT/J,=0.8, (d) kzT/J;=0.1 Open
and closed circles, and dot denote S, =1, S; =-1
and Sz =0, respectively.

Fig. 13 The formation of spin structure of S(c)
calculated by the MC simulation at (a)
kgTIJ=1.2, (b) kgT/J=1.0, (c) kgT/J;=0.8, (d)
kgT/J;=0.1. Open and closed circles, and dot
denote Sz =1, Sz =-1 and Sz =0, respectively.

3.4 GS Spin Structures on X-axis (J;=0)
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and Y-axis (J,~0)

We have investigated the GS spin structure
of the phase boundary (x-axis) between P(d) and
P(e) by the MC simulation. This phase
boundary between P(d) and P(e) appears on the
x-axis under the condition of J,/J;< -1/2. The
GS spin structure on this boundary is shown by
(a) in Fig.1l. This GS spin structure is
constructed by the mixture of S(d) and S(e) in
Fig.1, and S(f) shown by (b) in Fig.11 which is
the spin structure with the reversed spin of S,=
& 1 in S(e). These results agree with those
obtained by the previous study [ 15].
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Fig. 15 (a) the GS spin structures on the boundary
(x-axis) and (b) the GS spin structure S(f) with
reversed spin of Sz= *1 of the structure S(e).
Open and closed circles denote S; =land S; =-1,
respectively.

Next, we have investigated the GS spin
structure of the phase boundary (y-axis)
between P(c) and P(d) by the MC simulation.
This phase boundary between P(c) and P(d)
appears on the y-axis under the condition of
Jy/J;< -1/4. The GS spin structure on this
boundary is shown by (a) in Fig.12. This GS
spin structure is constructed by the mixture of
S(c) in Fig.1,and S(g) shown by (b) in Fig.12
which is the same energy with S(c) in the case
of J,~=0. These results agree with those obtained
by the previous study [13]. It is remarkable that
this GS spin structure on the boundary between

P(c) and P(d) is not the mixture of S(c) and S(d).
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Fig. 16 (a) GS spin structures on the boundary (y-axis)
and (b) the GS spin structure S(g) in the case of J,=0.
Open and closed circles denote S; =land S, =-1,
respectively.

4. Concluding Remarks

In the previous section, for the Ising spin system of
S§=1 with the bilinear exchange interaction J;S..S., the
three-site four-spin interaction J gS,-ZSj_,ZSkZ, the four-site
four-spin interaction J,S.5.5;.S. and a single-ion
anisotropy D, the magnetization <S>, the four-spin
thermal average <S.S;.5..5;>, the specific heat C), and
the GS spin structures have been calculated by making
use of the MC simulation.

Summarizing the present results on two-
dimensional square lattice, we may conclude as
follows:

(1) The phase diagram of the ground state of the Ising
spin system of S=1 with interaction parameters
J3/J; and J,/J; without a single-ion anisotropy D
are obtained by the MC simulation. This phase
diagram does not depend on the anisotropy D. The
conditions of phase transition and the GS spin
structures determined by this MC simulation show
good agreements with those calculated from the
comparison of energies per one spin for various
spin structures with low energy.

(2) The magnetic phases P(d) and P(e) with new GS
spin structures S(d) and S(e) are found in the
negative range of interaction J, The temperature
dependences of <S> and <S.S.S..S> show
interesting abrupt change in the process of
construction of the GS spin structure S(e).

(3) The behaviors of the temperature dependence of
Cy and <S§..5..5;.5;> may suggest that the spin
ordering for spin structure S(d) is more rapid than
those for spin structures S(b) and S(c).

(4) The GS spin structure on the x-axis (J5=0) in the
range of J,/J; <-1/2 is constructed by the mixture
of S(d) and S(e). On the other hand, the GS spin
structure on the y-axis (J,=0) in the range of J;/J;
<-1/4 is constructed by the mixture of S(c) and
S(g). Therefore, this GS spin structure has no
relation with structure S(d).
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