平行棒における【後方車輪】の巧拙をバイオメカニクス的観点から捉える

植村隆志* 村田憲亮** 柳浩二郎*** 田中靖久**** 笠井妙美***** 大川康隆**** 瀧上知巳**** 田山哲至******

Motion analysis on sports biomechanics of the Parallel bars "Giant swing backward to handstand"

bv

Takashi UEMURA, Kensuke MURATA, Kouzirou YANAGI, Yasuhisa TANAKA, Taemi KASAI, Yasutaka OOKAWA, Tomomi TAKIUE, Satoshi TAYAMA

(Received October 31, 2013)

Abstract

In this paper, we analyzed the motion of giant swing on the parallel bars in gymnastics from a viewpoint of dynamics comparing and contrasting the difference between skilled players and unskilled players.

The motions observed were "Giant swing on the parallel bars". This motion was filmed at sagittal plane, and the torque was calculated from these data by "Lagrange Method". The results were as follows.

①The status of the distance of center of gravity from the axis in all the subjects is similar to the status of giant swing on the horizontal bar. Also, the status of the joint angle is similar to previous studies.②In the skilled player's group, the distance of center of gravity from the axis decreases after passing right under the parallel bars.③In the skilled player's group, the subjects produce the bigger coriolis torque accrued to the forward direction of motion. It is suggested that the purpose of the instruction of giant swing on the parallel bars is to produce coriolis torque accrued to the forward direction of motion.

^{*} 東海大学熊本教養教育センター

^{**} 鹿屋体育大学スポーツ・武道実践科学系

^{***} 駒澤大学総合教育研究部スポーツ健康科学部

^{****} 東海大学経営学部

^{*****} 東海大学阿蘇教養教育センター

^{*****} 東海大学九州教学部熊本教学課

I. 背景•目的

2013年10月1日、ベルギー・アントワープにて第44回世界体操競技選手権大会が開催された。種目別平行棒に出場した9名の演技には、平均約2.5技程度[後方車輪]もしくは[後方車輪の上位技]が含まれていた1)。近年の体操界におけるレベルの高い試合において、[後方車輪]の技術が必要不可欠であることは明らかである。

また、平行棒の[後方車輪]は、鉄棒の[後 方車輪]と類似した構造を持っているにも関 わらず、鉄棒のものより高い難度が設けられ ている²⁾(図 1 参照)。

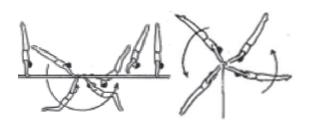


図 1. 平行棒の [後方車輪: C 難度] (左) と 鉄棒の [後方車輪: A 難度] (右)

これは、器具の構造上、技の難易度が高いためと考えられる。渋川³)は鉄棒の[後方車輪]について、力学的解析を行った結果、「棒下で肩の力を抜いて肩を伸ばし、振り上げる時には肩を縮めて、鉄棒に体を引きつけることが大切であろう」と述べている。このことは植村⁴)の「可変モーメントアームを持つ振り子モデル」によっても示唆されている。従って[後方車輪]は、真下では回転の軸から

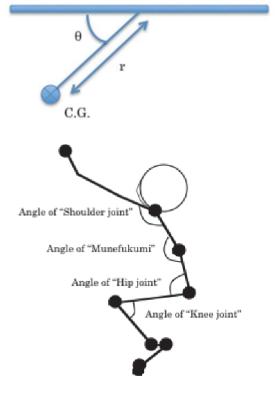
の距離を取り、真上に至るまではその距離を縮める必要があるといえる。しかし、平行棒の [後方車輪] は、器具の特性 (マットからバーまでの高さが 180cm²)) から、ほとんどの選手が真下で膝を曲げなければ実施出来ない技である。姿勢的簡潔性を求める体操競技⁵)の技にも関わらず、つり輪や鉄棒の [後方車輪]と違い、膝が曲がっても良いとされるところには大きな特徴があるといえる。しかも、真下で膝を曲げるということは回転の軸と重心の距離を縮める結果となる。従って、先に述べた鉄棒の [後方車輪]の力学的構造とは逆の構造を強いられると考えられる。

土屋6)は、平行棒の「後方車輪」と鉄棒の 「後方車輪」の力学的な比較を行い、「平行棒 における後方車輪の実施時には、鉄棒におけ る後方車輪の実施時に比べ、懸垂に至る局面 で股関節の伸展、懸垂以降の上昇局面で股関 節屈曲と早い時点から長期間にわたる肩関節 伸展のための筋力発揮がより必要であること が示唆された。」と述べている。しかし、土屋 の研究においては熟達した被験者による試技 を解析しており、実際に[後方車輪]が未熟 である被験者についての検討は行っていない。 以上のことから、本研究では平行棒の「後 方車輪〕について、未熟練者と熟練者間の kinematics データの比較を行い、実際の指導 場面に活かせる基礎資料を得ることを目的と した。また、回転の軸と重心の距離を検討し、 鉄棒に比べて力学的に不利な平行棒の課題を 克服している要因を探ることを目的とした。

Ⅱ. 方法

1. 被験者

被験者は、平行棒の [後方車輪] が卓越していると判断できる被験者(以下、熟練者)2名(身長:159.0cm±1.41, 体重:55.0kg±7.07)と、未熟であると判断できる被験者(以下、未熟練者)2名(身長:167.5cm±0.71,体重:56.5kg±2.12)とした。[後方車輪]についての評価は日本体操協会公認第1種男子審判員資格保持者の採点を参考にした。また、熟練者については[後方車輪]と[後方車輪]の発展技(ベーレ等)を試合で行っていたが、未熟練者は[後方車輪]のみ、試合で行っていたが、未熟練者は[後方車輪]のみ、試合で行っていた。


2. 試技の設定

被験者には、平行棒の[後方車輪]を数本ずつ行わせ、最も良いと思えた試技を選択させた。選択された試技の映像を解析対象とした。映像については、全ての試技を矢状面からデジタルビデオカメラ(SONY 社製)を用いて Frame Rate 30 frame/sec 、 Shutter Speed 1/250sec で撮影した。得られた映像は二次元ビデオ動作解析システム(Frame-DIAS II、DKH 社製)を用いて 2 次元座標を算出した。算出された 2 次元座標値は、バターワース型デジタルフィルタ Bryant:6Hz を用いて平滑化した。

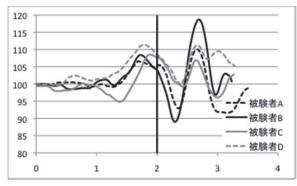
3. データ処理

各試技の Kinematics データとして、回転 半径、回転角度、回転角速度、肩・腰・膝角 度を算出した。各定義については下記の通り とした(図.2 参照)。また、算出された kinematics データを用いて「可変モーメント アームをもつ振り子モデル」を適用し、コリ オリのトルクを算出した。

Grip point

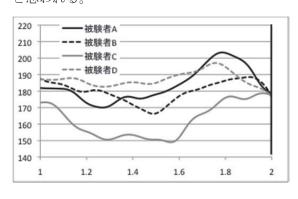
図.2 角度定義

1) コリオリのトルクの算出


コリオリのトルクの算出については、試技に「可変モーメントアームをもつ振り子モデル 4 」に適用し、下記の式により、コリオリのトルクに関する項のみ抜き出して算出した。

$$(mr^2 + I)\ddot{\theta} + 2mr\dot{r}\dot{\theta} + \dot{I}\dot{\theta} + mgr\sin\theta = 0$$

Ⅲ. 結果及び考察


1. 鉄棒の [後方車輪] と平行棒の [後方車輪] の類似点と相違点についての検討

各被験者の試技の回転半径を倒立時の値を 100%として規格化した(図.3 参照)。また、 重心が支持点の真下に至る位置を 2 秒時点で統一した。

図.3 回転半径の変化(横軸:sec. 縦軸:m)

重心が真下を通過する前までは、回転半径 が増加していく傾向を全被験者に見て取れる。 また、重心が真下を通過した後には回転半径 が減少する傾向が見て取れる。これらの傾向 は、鉄棒の[後方車輪]について渋川2)が報 告している「棒下で肩の力を抜いて肩を伸ば し、振り上げる時には肩を縮めて、鉄棒に体 を引きつけることが大切であろう」と一致す る。重心が支持点の真下を通過する直前に腰 角度の増大も全被験者共通でおこっているこ とから (図.4 参照)、土屋⁶⁾ の「平行棒にお ける後方車輪の実施時には、鉄棒における後 方車輪の実施時に比べ、懸垂に至る局面で股 関節の伸展、~中略~がより必要であること が示唆された。」という報告ともほぼ一致する と思われる。

図.4 腰角度の変化(横軸:sec, 縦軸:deg)

しかし、実際に重心が支持点の真下を通過する付近では膝関節の屈曲が起こり、回転半径はやや減少する傾向が見て取れる(図.3及び図.5参照)。このことは平行棒の器具特性上、支持点の真下付近では膝を屈曲せざるを得ないために回転半径が減少しているものと考えられる。

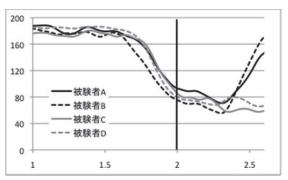


図.5 膝角度の変化(横軸: sec, 縦軸: deg)

また、重心が支持点の真下を通過した後に 回転半径が減少していることは全被験者に見 られたが、熟練者の方が未熟練者より減少幅 が大きかった。この点について力学的な検討 を行った。

2. 熟練者と未熟練者の相違点について(コリオリのトルクによる検討)

各被験者のコリオリのトルクの様相を、重 心が支持点の真下を通過する時点を統一し、 示した(図.6 参照)。

全被験者共、重心が支持点の真下を通過する前までは反・回転方向にトルクを発揮している。重心が支持点の真下を通過する直前から通過した後にかけて、大きく回転方向へのトルクを発揮している。

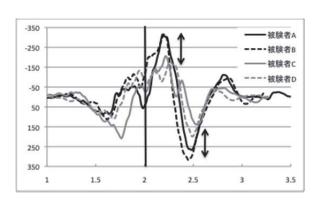


図.6 コリオリのトルクの変化 (横軸: sec, 縦軸: N・m)

また、最終的に倒立に至る時期では大きく 反・回転方向にトルクを発揮し、回転にブレ ーキをかけていることが見て取れる。

しかし、重心が真下を通過した後の回転方向のトルクが未熟練者である被験者 C・D より、熟練者である被験者 A・B の方が明らかに大きい値を示している。熟練者は回転方向へのトルクが大きいため、倒立へ至るための反・回転方向トルクも未熟練者に比べ大きいことが見て取れる。

土屋⁶⁾ は「平行棒における後方車輪の指導の際には、~中略~懸垂局面までは股関節角度を広く維持し、その後股関節の「あふり」を強く行うこと、肩関節の伸展動作である「バーの引き」と表現される動作を、懸垂局面の早い時点から強くかつ長く行うことを技術的なポイントとして把握することが、効率のよいトレーニングを実現させることにつながると思われる。」と述べている。土屋の表現している懸垂局面(支持点の真下を重心が通過する時点)からの股関節屈曲ととれる「あふり」と、肩関節伸展動作である「バーの引き」は、

懸垂姿勢で行えば支持点と重心とを近づける 結果になると考えられる。回転中に支持点と 重心の距離を短縮させることは、回転方向の コリオリのトルクを発揮することと同義であ る。従って、熟練者である被験者 A・B はこ の点において未熟練者より優れていたと考え ることができるであろう。

3. バイオメカニクス的観点から、指導に活かせる基礎資料としての提案

本研究における被験者は、全員平行棒の[後 方車輪]を最低限成立させている。全体の傾 向から捉えると、平行棒の[後方車輪]の指 導において、鉄棒の[後方車輪]と同様に、 重心が支持点の真下を通過する時点まで、で きるだけ回転半径を伸ばすよう努め、通過後 に回転半径を短縮することで回転方向のコリ オリのトルクを得て、倒立まで至るという構 造からアプローチすることが必要であると考 えられる。

しかし、平行棒の器具の特性上、重心が支持点の真下を通過する前後において、膝関節を屈曲させる必要があるため、回転半径が支持点の真下を通過する前に減少してしまうことが見て取れた。このことから、土屋⁶⁾の報告と同様、支持点の真下を通過する直前で股関節を伸展させ、回転半径の減少を最小限に留めることが重要であると考えられる。

また、熟練者は未熟練者に比べ、支持点の 真下を通過した後、股関節屈曲や肩関節伸展 動作をもって回転半径を短縮させ、回転方向 のコリオリのトルクを発生させることで、一 気に倒立に至るまでのトルクを獲得している 傾向が見られた。平行棒の「後方車輪」の発展技を修得するためには、回転方向の強いコリオリのトルクを発生させるよう回転半径を短縮させるよう指示することが重要であると考えられる。

Ⅳ. まとめ

本研究では平行棒の[後方車輪]について、 未熟練者と熟練者間の比較を行い、実際の指 導場面に活かせる基礎資料を得ることを目的 とした。

熟練者2名、未熟練者2名の平行棒の[後方 車輪]を側面から撮影し、動作解析を行った。 その結果以下の知見が得られた。

- ① 全被験者共、回転半径(支持点と重心の距離)の増減は鉄棒の[後方車輪]と似たような傾向を示した。また、関節角度の様相も過去の知見と一致した。
- ② 熟練者の方が未熟練者より、支持点の真下を通過した後におこる回転半径(支持点と重心の距離)の減少幅が大きかった。
- ③ 熟練者の方が未熟練者より大きな回転方 向のトルクを発揮していた。過去の知見とし て挙げられた平行棒の[後方車輪]の指導が、 回転方向へのコリオリのトルクの発揮を目的 としていることが示唆された。

Ⅴ. 引用・参考文献

- 1) 日本体操協会公式ホームページ http://www.jpn-gym.or.jp/
- 2) 日本体操協会審判委員会男子体操競技審判部,採点規則男子 2013 年版,日本体操協会,2013

- 3) 渋川侃二,現代保健体育学大系 6 運動力学 p125-p131,大修館書店,1969.10.10
- 4) 植村隆志,小金澤鋼一,加藤達郎,田中靖久, 笠井妙美,可変モーメントアームを持つ振り 子モデルによる鉄棒運動の解析,東海大学総 合経営学部紀要 第1号 p57-p63,2008
- 5) 金子明友,体操競技のコーチング,大修館書 店,1974.5.20
- 6) 土屋純,体操競技における身体動作のバイ オメカニクス的分析,早稲田大学大学院博士 (人間科学) 学位論文,2007.7